
OpenROAD Safe Names Conventions v1.0

The OpenROAD Project

December 5, 2019

Web: ​https://theopenroadproject.org/
GitHub: ​https://github.com/The-OpenROAD-Project

Introduction.

With integration of engines onto the new incremental substrate provided by ​the OpenDB
database​ and ​the OpenSTA static timing engine​, as well as the opening up to users and
developers of Tcl and Python scripting interfaces, the OpenROAD project seeks to define and
promulgate “safe names conventions” for the RTL-to-GDS space.

The purpose of this document is to give high-level guidance to our project members and to the
open-source EDA developer community, so that open-source EDA tools’ scripting interfaces can
remain clear of copyright infringement claims, particularly as they relate to “EDA tool APIs”. We
hope that following this guidance will result in the creation of “safe names” for open-source EDA
tool APIs in the RTL-to-GDS space.

The OpenROAD project thanks Avatar Integrated Systems for providing selected Aprisa user
manual content that has helped us develop the guidance below.

This document accepts comments. Please give us your feedback and suggestions!

Disclaimer and Notice.

No one in or associated with the OpenROAD project is a legal professional. The information
provided in this document does not, and is not intended to, constitute legal advice. All
information provided in this document is for general informational purposes only.

Organization of Document.

This document consists of two main sections.

● The first section addresses “how to create an EDA tool API name” -- e.g., for the actions
of “analyze setup timing” or “import LEF”.

● The second section lists “verb”, “object”, and “modifier” terms that we believe are natural
for tool developers and tool users within the RTL-to-GDS (synthesis,floorplanning,
place-and-route, timing analysis, optimization, etc.) space. We classify these terms as
“neutral/safe”, “not recommended”, and “recommended alternative”.

https://theopenroadproject.org/
https://github.com/The-OpenROAD-Project
https://github.com/The-OpenROAD-Project/OpenDB
https://github.com/The-OpenROAD-Project/OpenDB
https://github.com/The-OpenROAD-Project/OpenSTA

Section 1: How to Create an EDA Tool API Name.

Extension mechanisms (​Tcl​, Python) and naming conventions (​verb-modifier-object​-modifier,
underscore as delimiter​, ​case-insensitive​) in EDA have converged to a uniform industry-wide
style over the past several decades. Use of intuitive, straightforward terms (“report”, “delay”,
“propagated”) is natural, and avoids creating a “Tower of Babel” for users of EDA tools.

[As a side note: The style and conventions that we propose can be seen in the OpenROAD PI’s
academic projects such as the Metrics Dictionary at ​https://vlsicad.ucsd.edu/GSRC/metrics/​ or
the naming convention defined at ​https://vlsicad.ucsd.edu/GSRC/GTX/RULES/naming.html​.]

Most API names involve ​terms ​or ​literals ​of the following types:

● (1) a “​verb​” or ​action​, such as “run” or “load” or “check”;
● (2) an “​object​”, which is a noun such as “collection” or “arrival time”; and
● (3) zero or more “​modifiers​”, which are qualifiers or adjectives such as “above” or

“propagated” or “early”.

It is possible for a literal to be a compound term, indicated by the use of an underscore
character. An example: “number_of”, which functions as a modifier in, e.g., “number_of_clocks”.

Namespace ​literals may also be used, such as “db” or “cts”.

OpenROAD’s recipe for creating a new EDA tool API name is as follows:

● (1) choose the verb, such as “import”.
● (2) choose the object, such as “def” or “def_file”.

○ At this point, you may already be done! E.g., “import_def” is a very reasonable
API name. Similarly, “report_power” is also a reasonable API name.

● (3) choose modifier(s) of the object, such as “total”, “max”, “fall” or “leakage”.
○ The last example modifier can induce either “report_leakage_power” or

“report_power_leakage”. Both verb-modifier-object and verb-object-modifier
styles have been used in EDA tools. We believe ​verb-modifier-object is more
natural​ (e.g., “get_all_instances”, or “set_max_capacitance” (seen in public SDC
syntax)), but will note when certain modifiers are felt to more naturally follow
(certain) objects. For example, in the API name “report_ta_crpr”, the literal “crpr”
modifies “ta” (timing analysis) but is more natural after the “ta”​.

○ Multiple modifiers can be used, e.g., “unset_disable_inferred_clock_gating”.

Within OpenROAD itself, project architects will periodically review the consistency, intuitiveness
and usability of tool API names. ​It is a good idea to plan and discuss new APIs at the same
time that you discuss new functions with OpenROAD project architects and/or repo
owners.

https://vlsicad.ucsd.edu/GSRC/metrics/
https://vlsicad.ucsd.edu/GSRC/GTX/RULES/naming.html

Section 2: Classes of “verb”, “object” and “modifier” Terms.

Note: This section of the document will evolve with community input. We look forward to
receiving your comments and suggestions!

Subsection 2.1: VERBS

NOT RECOMMENDED RECOMMENDED
ALTERNATIVE

EXAMPLE API NAME NEUTRAL/SAFE VERB
LIST

all get_all get_all​_instances
add, bisect, check,
compare, compute, copy,
create, declare, dont_use,
enable, exchange, export,
extract, generate, help,
ignore, import, load, opt_,
optimize, place,
process, purge, quit,
route_, set, show, sort,
turn_off, undo, unset,
verify,

create add add​_clock

define declare declare​_custom_property

derive create create​_derived_clocks

disable turn_off turn_off​_case_analysis

exclude ignore set_xtk_noise_analysis
-ignore

insert add add​_scenario

parse process process​_proc_arguments

read import import​_def

remove purge purge​_assigned_delay

split bisect bisect​_object

swap exchange exchange​_cell

update compute compute​_timing

write export export​_verilog

Subsection 2.2: OBJECTS

Note: (1) “objects” can usually be thought of as “nouns”; (2) for simplicity, elements of
“variable/parameter” and “attribute” names are included here, since they typically build from
“object” names.

NOT RECOMMENDED RECOMMENDED
ALTERNATIVE

EXAMPLE API NAME NEUTRAL/SAFE OBJECT
LIST

arrival arrival_time set_xtk_noise_analysis
-ignore_​arrival_time

arrival_time, cell,
clock_object, clock_period,
clock_skew, cgc, constraint,
copy, corner, crpr,
db_object, def, delay, end,
end_pin, fanin, fanout,
instance, inverter_pair,
latch, latency, lef, lib, liberty,
load, macro, mode, module,
name, net, netlist,
number_of_, nets, oblist,
object_class, parasitics,
path, pin, placement,
property, routing, sdc, slack,
spef, spice, start, start_pin,
threshold, transition,
uncertainty_from_clock,
vcd, verilog, window, xtk,

attribute property get_​property

buffer inverter_pair add_​inverter_pair

class object_class get_property ​-object_class

clock clock_object
(not a strong injunction)

report_ta_crpr
-from_​clock_objects

clock_uncertainty uncertainty_from_clock

collection oblist copy_​oblist

_count number_of_ number_of​_pins

design module get_​modules

endpoint end , end_pin get_all_fanouts
-only_​end_pins

icg cgc is_​cgc​_enable

library lib purge_​lib

name hier_name full_​hier_name

noise xtk purge_​xtk​_noise_analysis

object db_object

period clock_period

si xtk purge_​xtk​_noise_analysis

skew clock_skew report_ta_clock
-​clock_skew

startpoint start , start_pin get_all_fanins
-only_​start_pins

timing timing_analysis report_​timing_analysis

unit distance_unit export_def -​distance_unit

Subsection 2.3: MODIFIERS

NOT RECOMMENDED RECOMMENDED
ALTERNATIVE

EXAMPLE API NAME NEUTRAL/SAFE
MODIFIER LIST

actual <NONE> above, all (except as an
option), assigned, bidir,
_cone, detail, crpr, early,
eco, every, fall,
from_objects, full,
generated, incremental,
internal, inverted,
propagated, late,
logic_one, logic_zero,
master, max, min,
multicycle, number_of,
orientation, rise, silent, ta,
threshold, thru_objects,
timing_sense, to_objects,
toggle, total

all ​(if an option, else OK) every purge_clock_object -​every

annotated assigned set_​assigned​_delay

_count number_of_ number_of​_pins

delta incremental incremental​_delay

from from_objects get_all_fanouts -​from_objects

is_generated generated get_ta_​generated​_clocks

high logic_one power_​logic_one​_default_static
_probability

inout bidir ignore_internal_cell_​bidir​_paths

low logic_zero set_xtk_noise_analysis
-​logic_zero

max max max​_total_cap

min min min​_total_cap

is_propagated propagated end_has_​propagated​_clock

quiet silent set_property -​silent

ref_ master_ master​_name

rise_fall timing_sense

switching toggle get_​toggle​_activity_pins

timing (analysis) ta get_​ta​_generated_clocks

to to_objects get_all_fanins -​to_objects

through thru_objects get_ta_paths -fall_​thru_objects

transitive_ _cone report_ta_fanin_​cone

verbose detail report_power_analysis -​detail

