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Abstract
The OpenROAD project is an ambitious initiative seeking
to develop an automated, open-source RTL-to-GDSII flow.
To build its complex toolset, OpenROAD brings together a
team of industry experts, veteran scholars, and enthusiastic
students from different schools and different countries. This
paper first presents our path to becoming OpenROAD con-
tributors, highlighting the nature of the OpenROAD project,
the recruitment process, and the necessary logistics. We
then summarize the contributions of the Brazilian team to
the OpenROAD project; these comprise the development of
five tools and more than 10K lines of released code, along
with authorship or co-authorship of two publications in the
research literature. We also summarize our experiences from
working in a large software project: (i) working environment
and relationship with people from around the world; (ii) task
management and short turnaround times; (iii) continuous
integration and testing; etc. Finally, we highlight the chal-
lenges of “refurbishing” academic research codes for use in
the design of production ICs.
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1 Introduction
Modern technologies introduce an ever-increasing set of
design rules and ever-more demanding power, performance,
and area targets. The cost of IC design continues to increase,
as complex SOC products require more commercial EDA tool
licenses and larger teams of expert engineers. The largest
semiconductor companies have extensive CAD and design
organizations and can rely on close support from their EDA
suppliers. On the other hand, small companies must work
with a reduced number of licenses and less vendor support.
These can discourage companies from taking risks, blocking
innovation in the market. Small design teams or early what-if
product conception can benefit from open-source EDA tools
in two ways. First, open-source tools are free, and second,
companies can customize or extend open source to achieve
their goals. However, there are only a few available open-
source EDA tools, most of which are developed for academic
purposes and cannot handle real production ICs.

The OpenROAD project is an ambitious project launched
in mid-2018 by the U.S. Defense Advanced Research Projects
Agency (DARPA); it aims to develop an open-source 24-hour
no-human-in-the-loop RTL-to-GDSII flow. (Unlike commer-
cial EDA tools, OpenROAD must automatically generate
DRC-clean, manufacturable layout.) To achieve its goals,
the project’s strategy relies on three base technologies seen
in Figure 1. Machine learning allows the prediction of tool
outcomes and enables the flow to auto-tune itself. Extreme
partitioning affords problem decomposition and a divide-and-
conquer approach to stay within turnaround time limits. Par-
allel and distributed optimization targets cloud deployment
to explore multiple solution paths concurrently, maximizing
design outcomes while mitigating noisy behavior of complex
heuristics. A fourth element, restricted layout, simplifies the
tool via “freedoms from choice”.

To develop the complex set of tools that serve as building
blocks of commercial RTL-GDSII flows, EDA companies rely
on hundreds or thousands of R&D engineers. EDA tool devel-
opers must be well-acquainted with advanced programming
techniques (especially in C and C++) as well as computer
science and computer engineering foundations. Even the
largest EDA companies struggle to find engineers with these
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Figure 1. OpenROAD’s strategy to conquer design complex-
ity in a 24-hour, autonomous RTL-to-GDSII flow.
skills. Additionally, the number of graduate students in the
field has decreased in recent years. Given this, as well as the
goal of seeding a free open-source EDA software ecosystem,
it is natural for OpenROAD to seek talents not only in the
U.S., but also overseas. In this paper, we describe the experi-
ence of being part of the OpenROAD project, through the
eyes of foreign students.

• We present how to become a contributor to the Open-
ROAD project. We discuss skills desired in a contribu-
tor, logistic challenges, and what to expect while work-
ing in the project. Notably, there are key differences
between OpenROAD and a typical academic research
project, bringing both advantages and disadvantages.

• We present the tools developed by us in the Open-
ROAD project, along with lessons learned from devel-
oping open-source code that supports the design of
real production ICs.

• We present challenges experienced when working in
a large project from abroad. We describe the experi-
ence of working with the industry veterans that lead
the project. We also discuss the difficulties of manag-
ing many tasks with reduced manpower, and the best
practices adopted for task management and continu-
ous integration.

The remainder of our paper is organized as follows. Sec-
tion 2 discusses the process and logistics of becoming a con-
tributor to the OpenROAD project. Section 3 introduces our
contributions to the project and discusses challenges we have
faced as developers, while Section 4 describes initial studies
and implementation toward the “extreme partitioning” base
technology of OpenROAD. Section 5 describes some impor-
tant learnings from our experiences in the project, and we
conclude in Section 6.

2 Becoming an OpenROAD Contributor
We now discuss how the OpenROAD project tackles issues
such as recruitment and logistics. We also note how Open-
ROAD differs from typical academic and industry contexts.
2.1 Not Research As Usual
The OpenROAD project deals with topics that are well-

researched in academia. But, working for OpenROAD is not

the same as working on an academic project. Research is
an important element in the development of OpenROAD,
and this can be quite similar to how universities and compa-
nies around the world tackle it. However, every other step
is different from what is typically seen in an academic re-
search group. While developing, the use and creation of unit
tests is mandatory. Once code is finished and working, it
must be checked to make sure it obeys the project’s coding
guidelines. Even with that, each addition must pass through
the contribution flow, which requires the testing of results,
removing any memory errors and leaks, checking naming
standards, and review. This is much more than is normally
done with student code (where fast development often ends
with export of results into tables of a paper), but it is indis-
pensable in any big project like OpenROAD – especially if it
intends to be “built to last”.
OpenROAD is based on software deliveries. Each contri-

bution represents either an important part of the flow (e.g.,
a clock tree synthesis tool) or a specific fix. Once a contri-
bution is made, the developer moves on to the next delivery.
This approach, alongside an extremely aggressive schedule
and shifting requirements from the sponsoring agency, can
easily cause technical debt: (i) tools support narrow fields of
use and functionality driven by deliverables; (ii) necessary
functionalities may be deferred to meet delivery times; or (iii)
GitHub issues and even failures in continuous integration
may be “deferred” if they are not on any critical path. In
OpenROAD, these technical debts are typically diagnosed
and documented to queue them up for work in the next
reporting period; this occurs in monthly project report doc-
uments that review the status of each tool. Regular, focused
reports help to see which parts of the project need help and
how to prioritize tasks. The approach is very different from
usual academic practice, where the frequency of updates and
reports depends on the researcher/student.
Planning and organization are also extremely important

to coordinate multiple teams. Each contribution is speci-
fied either by an error report from a team member (usually,
on an important testcase or “proof point” for the tool) or a
known missing feature in a tool. Guiding implementations
in this way allows OpenROAD technical leaders to make
sure no effort is wasted and that every member is working
with knowledge of the latest version of the code. We fur-
ther discuss OpenROAD’s working environment and project
management in Section 5 below.
2.2 Recruiting

The ideal candidate to work in the OpenROAD project is
someone with excellent programming skills and deep knowl-
edge and experience on VLSI. Good luck finding many of
these, as such candidates are lacking even in the EDA in-
dustry itself. Especially given the “not research as usual”
characteristics of OpenROAD, graduate students who have
the right skills and background could consider OpenROAD
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as misaligned with academic careers, due to the engineering-
focused work and lack of emphasis on publications.

Our team bypassed this problem by recruiting undergrad-
uate students with good programming skills and introducing
them to the concepts of VLSI CAD. Senior project mem-
bers who have decades of EDA industry experience work
alongside these eager-to-learn students, providing themwith
unique learning and professional opportunities.
Recruiting talented undergraduates to the project brings

longer learning curves for both programming skills and the
basic concepts of this newly-introduced field. With under-
graduates, time must be well-managed between their project
obligations and their day-to-day classes and other ongoing
education. But, in our experience bringing new talents to the
EDA field has proved itself to be a smart decision.
2.3 Logistics

Programming skills and VLSI knowledge are essential for
an OpenROAD contributor, but this is just the beginning. The
development of the OpenROAD project requires a suitable
infrastructure in terms of programming tools, computational
power, and technology access. The OpenROAD flow today is
composed of three main tools: Yosys [21], OpenROAD [18],
and TritonRoute [20]. Each has its own requirements to
build and execute, including compilers, interpreters, and
third-party packages. A special subteam of OpenROAD, the
“Internal Design Advisors” students and post-doc at the Uni-
versity of Michigan, uses commercial EDA tools (e.g., Mentor
Calibre) to validate that OpenROAD outputs meet require-
ments. For communication, and to otherwise address the
project’s needs, a common workspace is helpful.
As Brazilian students of public universities, we face mul-

tiple infrastructure limitations. We do not have powerful
servers where a large group of people can work. We lack
access to design enablements and tools that are common
elsewhere. This reflects the shortage of financial resources
that is currently endemic in our universities. To overcome
these barriers and to improve the velocity of development,
we have taken the extraordinary step of obtaining appoint-
ments as visiting students (research collaborators) at the
University of California, San Diego (UCSD).

For us to become visiting students at UCSD, it was manda-
tory to travel and stay in San Diego. During our stay, hosted
by the OpenROAD PI, we had the opportunity to meet some
project members and experience the work method of UCSD
students. As visiting students at UCSD, we have access to
a shared workspace along with other OpenROAD project
members. This enables us to be productive developers in the
OpenROAD project.

However, we still have particular circumstances of work-
ing in the OpenROAD project from abroad. It is not easy to
have quality internet service in Brazil, and we depend on
it to access the UCSD infrastructure. It is common to have
our work negatively affected by internet connection issues.
Support logistics also required some extra paperwork.

Finally, a small concern for some members of the Brazilian
team was the language barrier. The communication in a dif-
ferent language with the other members of the OpenROAD
project raised the necessity to improve English speaking
and understanding. (Also, the project leadership often lives
by the mantra of “if it is not written down, it does not ex-
ist”.) While this was never an issue for us, we emphasize the
importance of developing both spoken and written English
communication skills.

3 Our Contributions to OpenROAD
We now give details of the tools developed and maintained
by the Brazilian team. For each tool, we explain the addressed
problem, optimization objectives and constraints, and inte-
gration with other tools in the flow. We conclude each of
these discussions by noting near-term goals for the tool. Our
tools are integrated into the OpenROAD app [18], a unified
repository with almost all physical synthesis tools except
for the TritonRoute detailed router. We also discuss how we
have integrated the tools adapted from third-party codes
with the OpenROAD app.

In the OpenROAD project, all the physical design steps
are controlled by one environment: the OpenROAD flow
[19]. It consists of a set of tools that implement all steps from
logic synthesis to layout extraction. The inputs to this flow
consist of an RTL Verilog file, design constraints, and design
enablement elements such as Liberty, LEF and technology
files. The output is a tapeout-ready GDSII file. Figure 2 de-
picts the main steps of the OpenROAD flow: logic synthesis,
floorplan/power delivery network (PDN), placement, clock
tree synthesis (CTS), routing, and layout finishing. Parasitic
estimation and static timing analysis are also run to check
that constraints are satisfied. From each step, the OpenROAD
flow extracts log, design and metrics information; this can
be used in project management dashboards, in diagnosing
problems, or in simple learning applications. Contributions
from the Brazilian team can be found in floorplan (ioPlacer,
tapcell), clock tree synthesis (TritonCTS), and global routing
(FastRoute).

Figure 2. The OpenROAD flow. Tools in red are contribu-
tions from the Brazilian team.
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3.1 Floorplan
Floorplanningmay be one of themost incompletely-studied

topics in physical design, with only macro placement and
power-ground distribution having significant research liter-
atures. We have worked on the tapcell insertion and I/O pin
assignment, as described next.

Tapcell.Welltap and endcap insertion is a relatively straight-
forward task, which explains the lack of research papers and
available academic codes on the subject. However, a usable
RTL-to-GDSII flow must provide welltap and endcap inser-
tion, whichwe accomplish in the tapcell code. Moreover, each
technology node, memory generator and cell library brings
its own set of design rules that must be properly observed.
Our first contribution in floorplanning is a tapcell insertion
script, implemented in Tcl, that supports real design rules for
nodes from 130nm down to 14nm industrial enablements.
The logic of tapcell, and its consideration of numerous cor-
ner cases (location of vertical macro edges relative to the
default welltap “checkerboard”, odd- or even-row location
of bottom macro edges, N or FS orientation of bottom row
in site map, etc.), is as specified by an experienced physical
design methodologist in the OpenROAD team.

ioPlacer. Another critical but neglected floorplanning
task is I/O pin placement. In chip-level design, PAD and I/O
pin locations are commonly planned by the designers. How-
ever, for block-level design, the OpenROAD flow must per-
form automatic placement of I/O pins (i.e., terminals). This
is essential if an analytic global placement engine is used,
as is the case with OpenROAD. Our second contribution
to the floorplanning stage is a new I/O pin placement tool
called ioPlacer. As described in [4], ioPlacer addresses the
following problem. Given the design netlist, the core area,
one horizontal metal layer, one vertical metal layer and the
routing tracks, ioPlacer finds on-track locations for each I/O
pin from among a given set of available locations (called slots)
along the design’s core boundary. The ioPlacer objective is to
minimize the total Manhattan wirelength of I/O nets. Novel
techniques include speedups of the well-known Hungarian
assignment algorithm, and heuristics for non-random, macro
placement-aware I/O placement.

The future of tapcell and ioPlacer. The existing tapcell
scripts are fast and stable. Therefore, going forward, our only
goal with tapcell is to add support for more technologies.
On the other hand, the current ioPlacer implementation has
two limitations. First, we do not consider timing information
while performing I/O pin placement. Second, we only place
I/O pins in two metal layers (one horizontal and one vertical).
We have received feedback from experts saying that the
latter limitation is more critical to address. However, due to
the high demand of work in OpenROAD and the fact that
the current implementation is very stable, addressing this
limitation has not yet been scheduled.

3.2 Clock Tree Synthesis
The clock tree synthesis tool, TritonCTS, is our oldest

contribution to OpenROAD. Development started with the
project itself, in June 2018. The starting goal was to build an
open-source tool based on the original scripts and code of
the Generalized H-Tree (GHTree) [5] approach. This brought
many challenges since the original implementation relied
on commercial tool scripts to perform various steps: (i) a
commercial P&R tool parses the design and writes clock sink
locations to a text file with a simple syntax; (ii) the clock tree
topology is created using dynamic programming; (iii) clock
sink clustering and clock buffer placement are performed
via an integer linear programming (ILP) formulation and a
commercial solver; (iv) the OpenAccess database [6] is used
to add clock tree subnets back into the design; and (v) finally,
the clock tree routing is done using the commercial tool.

Removing commercial code. To release the GHTree
approach under a BSD-3 license, we first had to remove all
commercial tool dependencies. For example, we replaced the
P&R tool-based parsing by our own in-house DEF parser,
operating on a tight schedule to meet timeline needs. This
proved to be a bad choice, because time gained with the
simple implementation was lost in many fixes to handle cor-
ner cases and possible syntaxes. (We now understand that a
golden LEF/DEF parser should have been adopted from the
start – a lesson that applies to many other basic EDA compo-
nents.) Usage of the OpenAccess database was replaced by
our own Verilog and DEF writers. Because open-source ILP
solvers are not sufficiently performant, we replaced the orig-
inal authors’ use of commercial ILP solvers with min-cost
flow based heuristics. Finally, the commercial router was
replaced by our own OpenROAD global and detailed routers.
Thus, after removal of commercial P&R and ILP tools, as well
as OpenAccess, it was possible to release the first version of
our CTS tool, named TritonCTS, on GitHub.

Technology characterization. When first released in
GitHub, TritonCTS required a technology characterization
file with a lookup table containing power, delay and capaci-
tance information for buffered wires. We also released scripts
to generate the characterization files; however, many users
found it difficult to understand the characterization input
arguments and to check whether characterization files were
correctly generated. Learning from this, we have made the
characterization automatic in the OpenROAD flow. In our
current implementation, the characterization is called auto-
matically in the beginning of CTS. To avoid recomputing
the same numbers for every run made in a given enable-
ment, the user can save the characterization file and use it
in subsequent runs.

Starting from scratch: TritonCTS 2.0. The first year of
TritonCTS release exposedmany issues arising from the com-
plex, “academic” nature of the GHTree approach. GHTree
had been designed to work best using even sink placement
distributions. Also, runtime and memory consumption of the
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high-dimensional dynamic programming scaled poorly with
respect to the core area. With incorrect setup, the dynamic
programming could run for up to an hour and consume
150GB peak memory, in a design with less than 200K clock
sinks. Additionally, the original code would require signifi-
cant changes to support multiple clocks, clock gating cells
(CGCs) and generated clocks. With this in mind, we em-
barked on rewriting a “Simple CTS” from scratch. Within
one month, we created a new tool, fully integrated with the
OpenROAD app, called TritonCTS 2.0. Our new code has
benefited from tight integration with the project’s database
(OpenDB) and timer (OpenSTA). This experience is a good
example of how important a good base infrastructure (in
our case, the OpenROAD app) is to the quality of the tool.
The current implementation has a simple top-down flexible
H-tree heuristic (i.e., a non-generalized H-tree!), but is robust
and produces decent results in internal testcases.

The future of TritonCTS. The current version of Tri-
tonCTS still has obvious weaknesses, such as difficulty in
achieving desired skew or insertion delay metrics. This is the
subject of research toward a future new version of TritonCTS.
One example weakness: the current use of a top-level H-tree
brings high wirelength and latency, with a large number
of buffers placed in any clock root to sink path. There are
intrinsic challenges as well, notably that CTS sits between
upstream placement and downstream routing, which makes
fine-tuning difficult. Not only does testing and tuning of a
new CTS solution requires the full flow context, but the CTS
outcome is intimately tied to steps outside of TritonCTS such
as global placement, placement legalization, and slew repair.
Some post-CTS steps can unbalance the CTS solution, and
need to be taken into better consideration by TritonCTS;
other pre-CTS steps should better understand what it means
to be “friendly” to TritonCTS.
3.3 Global Routing

FastRoute was developed originally by Pan et al. [8]. It
is an academic global routing tool that uses a series of tech-
niques – including congestion-driven and via-aware Steiner
tree construction, and multi-source multi-sink maze routing
– to achieve high-quality routing solutions. There are five
versions of FastRoute, each adding new techniques to im-
prove quality of results [9] [13] [12] [10]. In the OpenROAD
flow, we have adapted FastRoute4.1 [10], the last version of
the tool and the version open-sourced under BSD-3 license
in November 2018 [15].

The original code of FastRoute4.1 uses the input and out-
put file formats from the ISPD 2008 Global Routing Contest.
These formats are academic and do not match the formats
adopted in the OpenROAD flow, i.e., LEF/DEF as input and
guides [7] as output. Therefore, a starting step was to create
an interface between the formats used in the project and in
FastRoute4.1, and integrating with OpenDB [17], which is
the OpenROAD project’s database. Other enhancements and
new features are described in the following.

Scalability was perhaps the most significant issue in the
original FastRoute implementation that required fixing for
use in OpenROAD. Initial limitations of FastRoute which
have now been removed include:

• A net degree should be less than 1000.
• Designs should have at most eight routing layers.
• The preferred direction of routing layers was hard-
coded.

• The routing grid was limited to a constant value, re-
stricting the designs’ area.

• The layer assignment had hardcoded pin layers.

The routing resourcesmodel in FastRoute was adapted
from the ISPD 2008 Global Routing Contest to the Open-
ROAD flow environment. Beyond this, it was necessary to
implement a correct calculation of “true routing resources”
according to both technology attributes (e.g., spacing rules,
transition layers, routing track pitches) and design attributes
(e.g., routing obstacles, macro blocks, pin geometries). Cor-
rect understanding of routing resources allows the global
router to avoid congested areas, creating quality results for
the detailed router.

A critical functionality required in the OpenROAD project
is fine-grain control of the global routing resource model.
Passing a realizable global route to TritonRoute is important
not only because of the DRC-clean output requirement, but
also because OpenROAD’s flow is currently non-reentrant
and non-iterative. After computing routing resources (”sup-
ply”) from technology and design attributes, FastRoute al-
lows reduction of the resources on a per-layer and per-region
basis. We have also performed studies and experiments to
find proper resource configurations for each technology stud-
ied in the project, evaluating how different resource configu-
rations impact quality of the final detailed routing solution.

Three new features have been added in the global
router: clock net routing, antenna repair, and parasitics esti-
mation. The clock net routing feature allows specifying a
different configuration for clock nets. The routing layer range
sets the minimum and maximum routing layers on which
these nets will be routed, and the routing topology of these
nets can be generated using FLUTE [2], the default Steiner
tree constructor of FastRoute, or using PDRev [1]. The an-
tenna repair feature is a preemptive approach to mitigate
antenna rule violations [11]. The long routing segments that
may create antenna violations in the detailed routing can be
inferred in the global routing result. Therefore, we evaluate
the global routing result to find nets with antenna violations
and fix the violated nets by inserting diodes. The antenna
checking/fixing flow involves calls to the antenna checker,
netlist updates, and placement legalization of inserted diodes
– but in our initial implementation it is driven by FastRoute.
The parasitics estimation feature computes capacitance
values for pins and wires of the nets using the global routing
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results. It is used by the Resizer tool (with OpenSTA) to iden-
tify and fix nets with maximum transition and maximum
capacitance violations in the place-and-route flow. Finally,
we have implemented an API that allows the integration of
FastRoute with other tools inside the OpenROAD Project.
Most of the above issues and enhancements were iden-

tified during the tool’s execution in the OpenROAD-flow.
Often, the pending solutions were of highest priority. Thus,
we have typically had only short periods to implement issue
fixes and new features, leading to a backlog of missing docu-
mentation and poor implementation design choices. We are
now improving the architecture of the tool with close guid-
ance of a very experienced software engineer in the project,
aiming for better maintainability and efficiency.

The future of FastRoute. We are currently using Fas-
tRoute only to generate routing guides for the detailed router,
as well as the above-mentioned purposes. We intend to use
FastRoute in other flow steps such as congestion- and timing-
driven placement, and in (learning-enhanced) parasitic esti-
mation during global placement through clock tree synthesis.
We also intend to solidify the tool’s support for different tech-
nology nodes, and implement any future enhancement that
the OpenROAD project may require in the future.

4 Towards Extreme Partitioning
One of the foundations, or base technologies, for OpenROAD’s
scalability is the use of extreme partitioning to cope with
design complexity. Partitioning tools break a given prob-
lem into smaller pieces that have some amount of indepen-
dence and potential for parallelism. Core implementation
algorithms can then process these subproblems individually,
thus tackling runtime scaling.
4.1 Harnessing Clustering and Partitioning Tools
Over the years, many partitioning and clustering tools

with different, but equally well-motivated, features have
arisen. To access this diversity of techniques, we developed
partclusmanager, a module in OpenROAD that integrates
three well-known multilevel partitioning tools under a sin-
gle Tcl API. Adapting three completely different frameworks
to work under the same management tool was challeng-
ing, especially considering the chosen tools: (i) MLPart, a
classic hypergraph partitioner implemented for VLSI CAD
applications in the early 2000s; (ii) gpmetis [16], a highly
regarded graph partitioner from the METIS family; and (iv)
Chaco [14], a graph partitioner with many unique parameter
options (e.g., architecture and terminal propagation).

Standardization. In VLSI CAD, netlists are naturallymod-
eled using hypergraphs, where vertices are instances and
hyperedges are nets. However, in many applications ranging
from analytic placement to scientific computing, graph-based
algorithms are much more common than hypergraph-based
ones. Therefore, it is very common for the same hypergraph
to graph decomposition algorithms to be implemented each
time a new graph-based tool is to be used within the same

research group. This generates possible discrepancies among
the implementations and, consequently, among the achieved
results. In PartClusManager, we offer graph customization
options comprising different models (e.g., clique, star, hy-
brid), seven different formulas to calculate edge weights, and
two options for vertex weights. This permits a standardized
input for all partitioners managed by our tool, along with
the possibility to dump the generated graph to a file for use
in different tools. Besides input standardization, a common
method to evaluate the results generated by different tools
is needed. We implemented an evaluation function with
three different assessment metrics (number of hyperedge
cuts, number of terminals, runtime) to process the generated
results. This feature can also be used to evaluate alternative
partitioning solutions read from files.

Clustering. Each of the selected tools uses recursive coars-
ening as the first step in its overall multilevel partitioning
process. We encapsulate the results of this step as a method
for creating coarsened netlists, where we consider clusters as
instances and infer their connection topology from the flat
netlist. To achieve this, a deep understanding of the original
third-party codes was needed to modify the implementation
and extract these results without interfering with the usual
flow of each tool.
4.2 Modularity-Driven Clustering
In OpenROAD, we have also studied a novel category of

modularity-driven clustering algorithms. Unlike traditional
VLSI clustering methods, modularity-driven clustering finds
natural clusters in a graph using the modularity criterion.
Thus, modularity-driven algorithms do not require user-
input parameters such as target number of clusters, balance
constraints, or coarsening ratio. In particular, the Louvain
algorithm implements a fast and effective heuristic. In our
studies, published in [3], we use Louvain to predict groups
of logic gates that will stay together in the implementation
flow. Comparing Louvain with traditional VLSI partitioning
and clustering tools, we find that Louvain clusters better
correlate with flat instance placements, using less runtime.
We also propose a technique that performs a fast, “seeded
blob-placement” of netlists based on modularity-driven clus-
ters. This approach has shown up to 50% speedup in place-
ment with less than 1% post-route wirelength degradation
for multi-million instance netlists. We believe that such a
technique can speed up placement of large netlists in Open-
ROAD in the future.

5 The OpenROAD Experience
In this section, we highlight important aspects of, and learn-
ings from, working remotely for a large project. We describe
how the OpenROAD project has evolved to facilitate the com-
munication of multiple teams spread in many geographic
locations and time zones. Some best practices and tools for
task management and team communication are also noted.
We conclude by discussing the importance of the OpenROAD
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automatic testing methodology that allows incremental mod-
ifications without breaking the OpenROAD flow – enabling
what is called continuous software integration (CI).
5.1 Working Environment

The OpenROAD project has characteristics that differenti-
ate it from a regular EDA project. We have stated it before:
this is not research. However, this is not a company either.
The OpenROAD project has a team composed of dozens
of contributors, mostly students from different universities,
who are located in different places around the world. The
teams are divided according to the universities, and we also
have a few experienced designers, researchers and program-
mers who give us support for tools, guidance in coding and
design choices, and infrastructure management.
Our team in Brazil also has unique characteristics. We

have had six students in our team during our participation
in the OpenROAD project, where four of them were un-
dergraduate students. Currently, our team is composed of
two undergraduate students and one master’s student. We
must manage our time across university obligations, such as
classes and exams, and the project tasks. The OpenROAD
project has also been the first experience in a “real world”
project for most of us. It is therefore the first step of our
future careers, even when our perspectives are not aligned
with the EDA area. The learnings we get from this large
scale project in task management, team organization, and
software development are valuable for any industry area
where we eventually intend to work.

One of the most significant experiences we have from the
project is working with people from all around the world.
For most of our team, the OpenROAD project provided the
first contact with people from other countries, with differ-
ent backgrounds and knowledge. This has allowed us to see
different points of view of academic research, understand
industry expectations, and work with experienced engineers.
However, we have also seen some conflicts with the different
cultures and backgrounds of the project members. Some-
times, senior members of the project expect everything to
be the way they think is correct, resulting in curt comments
about our code. On the other hand, senior project members
have been kind in willing to share their experience with us.
5.2 Teams Organization and Task Management

Due to OpenROAD being an international project, certain
challenges come up when discussing organization and task
management. Working with people from different countries,
and therefore with different time zones, is a significant chal-
lenge, and especially impacts communication. Emails are a
sure way of reporting tasks and issues, as well as keeping
track of them. However, since there are no common work
shifts, the number of email iterations can quickly rise, even
among members of the same team. For example, no mat-
ter whether we are working in the morning or afternoon or
night, communication to certain countries will be impossible.

In the beginnings of the OpenROAD project, email was
more heavily used to define tasks and discuss implementa-
tions. Because of the issues presented above, as well as cc
lists leading to confusion and lack of documentation, the
OpenROAD project adopted Kanban-based project and issue
tracking using Jira. Task documentation has become simpler
and cleaner, issues are easy to find and organize, and threads
can follow a single history that multiple team members can
see and comment on. GitHub issues can also be used when
discussing issues with the users of the OpenROAD app.
While task and issue tracking is now easy to work with

and fairly straightforward, there is still some confusion with
communication when dealing with different steps of the flow.
This is for two reasons. First, there is not a strong team hi-
erarchy concept in the project, since the universities and
companies in the project each have their own “principal in-
vestigators” and internal management, which is not very
transparent. Second, the project structure is contractually
organized according to “Tasks” such as parasitic extraction
or timing or placement (these three Tasks were originally
spread across four different entities). The result is that an
issue can stay on standby for quite some time without any-
one assigned to it, and error reports for specific parts of the
flow can end up with the same fate. This is where live meet-
ings and emails come into play. When multiple members
are discussing and screen-sharing issues together, tasks are
assigned much faster and, consequently, are finished in less
time, hopefully removing blockers for other team members.
5.3 Continuous Integration
The OpenROAD’s flow is mainly composed of tools that

are in constant need of expansions and improvements. Most
of these tools were completely independent projects belong-
ing to different work teams with distinct coding conventions.
Each of these tools was modified to provide an integration
friendly version. Additionally, multiple integrable versions
were created with different features and levels of stability.
Therefore, a unified repository was created to guarantee that
all users have access to the most recent stable version of
each tool. To guarantee the stability of this repository, both
individual unit tests and top-level tests were proposed to
be performed using an automation server to build and test
software reliably. This would assure that the added modifi-
cations did not compromise the correctness of the extended
tool or impacted the functionality of others.
We have seen that with the constant expansion of the

tools for the OpenROAD project, the ideal repository came
to be challenging to maintain. Continuing to synchronize the
integrated and the standalone versions of the tools became
less of a priority, as the original tools were barely used any-
more. Managing dependencies between several repositories
was also too much overhead. Our tools have been merged
into one single repository to improve software quality and
provide more standardized and organized code practices. Al-
though monorepos are easier to break and more difficult
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to test, they are easier to maintain and can speed up the
development process as features or components that are
standard to multiple tools do not need to be implemented
several times. As we write this, even though an automation
server is properly integrated into our repository, it is not
sufficiently robust and fail warnings may be deliberately
ignored especially if project priorities have been changed.
The OpenROAD project is slowly moving toward having a
good continuous integration process, but much is yet to be
improved and reorganized.

6 Conclusions

In this paper, we have presented the experience of being a
contributor to the OpenROAD project from the perspective
of foreign students. We discuss the nature of the OpenROAD
project, highlighting the characteristics that differentiate
it from typical academic research, such as software devel-
opment standards and coordination of multiple teams. We
describe the desirable skills to contribute to the project, such
as programming skills and VLSI experience, and the chal-
lenges and workarounds we face by working from abroad,
especially regarding infrastructure and technology access.
We also describe our contributions to the OpenROAD

project, which include four tools used at the floorplan, clock
tree synthesis, and global route stages of the OpenROAD-
flow, as well as two additional tools that can underlie the
extreme partitioning strategy. We also describe considera-
tions inherent in open-sourcing academic code for the design
of production ICs, and development of brand-new tools for
subjects neglected in the VLSI CAD literature.
Finally, we discuss our experiences and learnings from

working on a large scale project. We emphasize that the
OpenROAD project is not normal academic research, and it
is not a company either. We have several teams composed
of students from different universities, and a few engineers
with industry experience. We present our team’s unique
characteristics and relations with other project teams, espe-
cially with the senior members. We describe the challenges
and solutions for team organization and task management,
showing the evolution of communication and documentation
methods and the open issues we still face. Last, we describe
methodology for the development and maintenance of our
tools using unit tests and top-level tests, to improve code
stability and reliability.
Our team plans to keep contributing to the OpenROAD

project in the best ways possible. We are currently sup-
porting the five tools described in this work. The above-
mentioned improvements of FastRoute, which achieve bet-
ter maintainability and development efficiency, are being
propagated to all the tools that we have worked on. And, a
near-term roadmap of functionality is clear – e.g., ioPlacer
requires enhancements for timing-driven multi-layer I/O pin
assignment; TritonCTSmust improve its ability to meet strict

timing requirements; and the partitioning tools under part-
clusmanager need to be integrated with the OpenROAD flow
as it provides more support to chip- and block-level plan-
ning use cases. We hope that this paper will motivate more
talents to join OpenROAD, which would in itself expand our
contributions to the project.
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