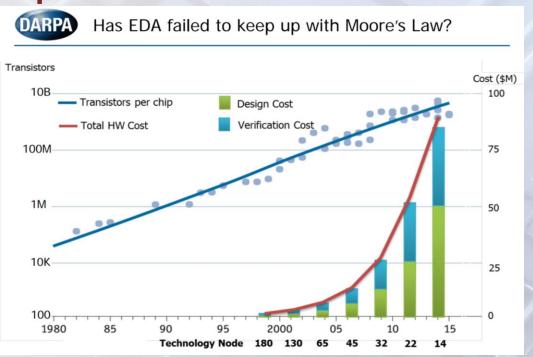


ANDREW B. KAHNG

UNIVERSITY OF CALIFORNIA, SAN DIEGO

OPENROAD:

FOUNDATIONS AND REALIZATION OF OPEN, ACCESSIBLE DESIGN


This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).

The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

THE CRISIS OF HARDWARE DESIGN...

 ASIC design in advanced technologies: Huge barriers of Cost, Expertise and Risk

Source:

...IS A CRISIS OF INNOVATION

- Hardware innovators actually write code!
 - VHDL or Verilog that gets compiled into ICs

 The Real Crisis: Innovators are unable to evaluate their code in terms of SWaP and performance metrics

Root Cause: The Crisis of Hardware Design

HOW IS ASIC DESIGN DONE TODAY?

Very sophisticated tools with 1000s of commands

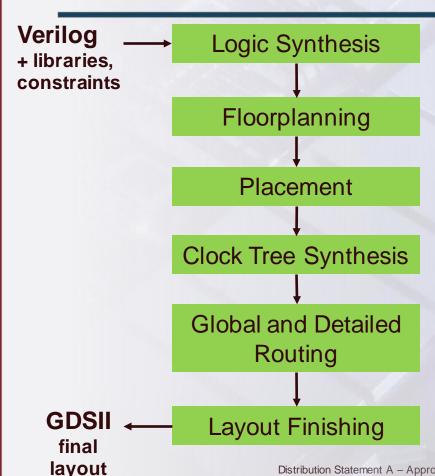
Tool supplier focus: <u>ultimate</u> performance, power, area

Large teams of expert users, many manual steps

Long project schedules

Significant project risks

OPENROAD: NO HUMANS, 24 HOURS


FOCUS: <u>ULTIMATE</u> ease of use and runtime

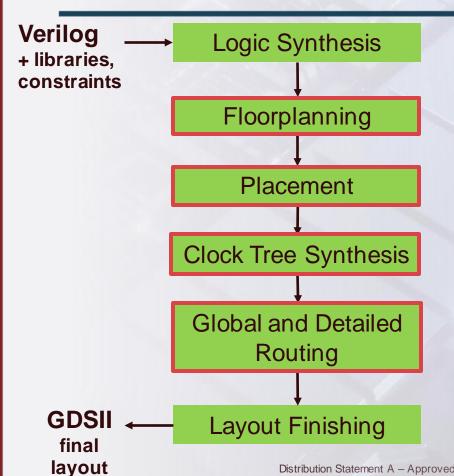
- Directly attack the crises of design and innovation
 - Schedule barrier: RTL-to-GDS in 24 hours
 - Expertise barrier: No-human-in-the-loop, tapeout GDS
 - Cost barrier: Open source (and runs in 24 hours)

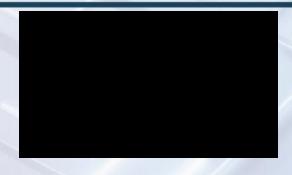
- Unleash system innovation and design innovation
- Enable tool customization to system, application needs

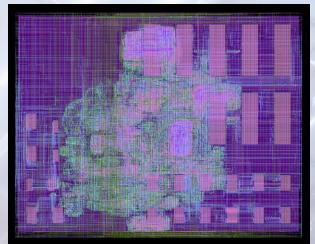
OPENROAD V1.0

- ERI 2019: Proof of capability
 - DRC-clean RTL-to-GDS, 65nm
 - "File-based flow" 1980's EDA

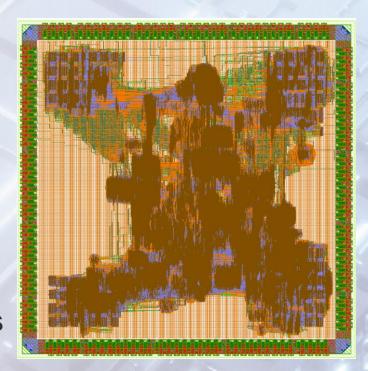
- Today: a v1.0 OpenROAD tool
 - DRC-clean RTL-to-GDS, 12nm
 - UW's "BlackParrot" SoC
 - Integrated tool, modern EDA


OPENROAD AVAILABILITY

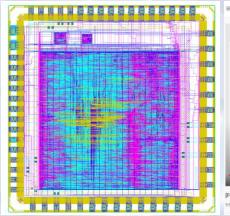



- The Project on GitHub
 - https://github.com/The-OpenROAD-Project
- The Flow, developed by internal design advisors subteam
 - Drives the entire automation of the full flow using tool components focused on automation
 - https://github.com/The-OpenROAD-Project/OpenROAD-flow
- The Top-level Application
 - An integrated EDA tool focused on full automation
 - https://github.com/The-OpenROAD-Project/OpenROAD

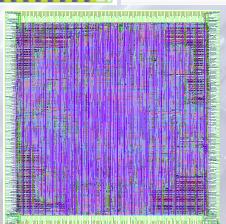
OPENROAD V1.0 IN ACTION



12NM SOC TAPE-IN: BLACKPARROT


- U. Washington RISC-V SoC
 - · 2 cores, 700K cells, 98 macros
 - 3mm x 3mm package
- GLOBALFOUNDRIES 12LP PDK
 - Invecas IOs
 - Arm standard cells and RAMs
- Output GDS is DRC/LVS clean
 - Mentor Calibre w/ foundry scripts
- RTL to GDS: < 16 hours

OTHER USAGE



- efabless "striVe" SOC
 - SKY130 tapeouts
 - 6 weeks → 6 hours

- ASSURE (NYU, POLIMI) obfuscated RTL
 - OpenROAD worked out of box
 - 12nm overhead: < 10%

Source:

https://www.youtube.com/watch?v=EczW2lWdnOM

11

MANY BREAKTHROUGHS

- 12nm tapeout-capable tool from an academic research project
- Integrated architecture, database, timing engine built to last
- Many academic firsts
 - Floorplanner
 - Detailed router
 - No-humans, 24-hours, DRC-clean

Foundation for research, innovation, transitions

PHASE 2: GROWTH + TRANSITIONS

- Growing the sustainable business + research ecosystem
 - Businesses will productize, distribute, support
 - Research ecosystem will innovate faster
 - Special application, system needs will be better served
- Growing the technology
 - 7nm capability
 - Machine learning → intelligence and self-adaptation
 - Cloud deployment -> exploiting more threads in 24 hrs
- Growing the user and developer community

OPENROAD TEAM: PI'S AND FACULTY

Kahng

Cheng

University of California, San Diego

Saul

Coltella

Arm

Penzes

Blaauw

Sylvester

Dreslinski

Sapatnekar

Reda

University of Minnesota Brown University

GLOSSARY

- ASIC Application-Specific Integrated Circuit
- DRC Design Rule Check
- EDA Electronic Design Automation
- GDS Graphic Design System (also GDSII)
- LVS Layout Versus Schematic
- PDK Process Design Kit
- RAM Random Access Memory
- RISC Reduced Instruction-Set Computer
- RTL Register-Transfer Level
- SoC System-on-Chip
- SWaP Size, Weight and Power
- VHDL VHSIC Hardware Description Language