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Abstract—Large language models (LLMs) serve as powerful
tools for design, providing capabilities for both task automation
and design assistance. Recent advancements have shown tremen-
dous potential for facilitating LLM integration into the chip
design process; however, many of these works rely on data which
are not publicly available and/or not permissively licensed for use
in LLM training and distribution. In this paper, we present a
solution aimed at bridging this gap by introducing an open-source
dataset tailored for OpenROAD, a widely adopted open-source
EDA toolchain. The dataset features over 1000 data points and
is structured in two formats: (i) a pairwise set comprised of
question prompts with prose answers, and (ii) a pairwise set
comprised of code prompts and their corresponding OpenROAD
scripts. By providing this dataset, we aim to facilitate LLM-
focused research within the EDA domain. The dataset is available
at https://github.com/OpenROAD-Assistant/EDA-Corpus.

I. INTRODUCTION

Chip design is a complex process which requires deep domain
expertise, both in foundational knowledge and in the electronic
design automation (EDA) tools used in creating chips. This
expertise creates a barrier not only for newcomers to chip
design, but even for experts switching to different tools or
sub-domains within chip design, lowering their productivity.
Recent advancements in LLMs have demonstrated tremendous
potential in task automation and comprehension of esoteric
topics. Works like ChatGPT [1], Copilot [2], and others have
shown high performance on a wide variety of tasks; however,
these LLMs are powered by training on extremely large
data corpora. General-purpose LLMs are known to experience
trouble extending to esoteric tasks when their training corpora
lack sufficient coverage of the target domain.

Recent works on domain-specific LLMs for EDA have
shown that tailored data sets and fine-tuning mechanisms
can significantly improve performance over foundation mod-
els [3]–[5]. While models which relate to frontend RTL design
have significant data available due to open-source languages
such as Verilog, models related to backend physical design
have scarcely any data available due to a heavy reliance on
proprietary APIs, tools, and data.

To date, LLM methodologies in physical design EDA face
significant challenges due to the absence of accessible, open
infrastructure. The high cost of licenses for access to com-
mercial EDA tools, documentation, and tutorials places them
out of reach for the wider community. Moreover, these tools
are bound by strict end-user license agreements which often
restrict activities such as benchmarking, training AI with their
documentation, and freely exchanging user scripts.

To foster research in LLM-assisted physical design, we
introduce EDA Corpus, a curated dataset for physical design
automation tasks. EDA Corpus is based on OpenROAD [6],
a widely utilized open-source EDA tool for automated place
and route tasks. Leveraging OpenROAD mitigates obstacles
associated with proprietary EDA tools, enabling the public
release of our dataset and facilitating its use with LLMs
without licensing constraints. EDA Corpus consists of two
types of data: (i) question and answer pairs, and (ii) prompt
and script pairs. The question-answer dataset contains pairs
of prose questions about OpenROAD and the corresponding
prose answer. The prompt-script dataset contains pairs of prose
requests to execute actions and the corresponding Python script
which executes the actions using the OpenROAD API.
Our key contributions include the following:

• Release of a question-answer dataset to train LLMs on
answering questions about physical design methods using
OpenROAD. Each data point was provided by or verified
as accurate by OpenROAD experts.

• Release of a prompt-script dataset to train LLMs for script
generation for physical design tasks in OpenROAD. Each
data point was verified through execution in OpenROAD.

• Demonstration of improvement over state-of-the-art
LLMs by fine-tuning ChatGPT [1] with EDA Corpus.

To the best of our knowledge, this is the first publicly
released [7], permissively licensed dataset to drive training of
LLMs for physical design tasks. By releasing this dataset, we
aim to seed efforts for training LLM assistants for physical
design. LLMs have the capability to dramatically increase
physical design accessibility for both new and seasoned chip
designers alike. Furthermore, it sets an exemplar for continued
research in EDA and physical design.

II. BACKGROUND

A. LLMs for Chip Design and EDA

Recently, there have been several works on using LLMs for
hardware design that span high-level synthesis [8], hardware
description language (HDL) generation, place and route script
generation [3], and more. LLM4EDA [4] establishes a taxon-
omy for three classes of EDA LLMs:

• Chatbot assistants for learning the details of an EDA
tool flow and process to design chips [5]

• Code generation and evaluation for generating high-
quality HDL code [9]–[13] or EDA tool scripts [3]
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• HDL verification and analysis for code summarizing
and bug-finding [5], [14]–[16]

To the best of our knowledge, prior art using LLMs for
physical design is extremely limited. ChatEDA [3] conducts
fine-tuning using 1,500 self-generated data points; however,
there is no public dataset that has been released as a part of
this work. To fill this gap, EDA Corpus provides datasets for
training LLMs on physical design tasks within OpenROAD. It
aims to train chatbots to assist in both understanding physical
design in the context of OpenROAD as well as converting user
intent into physical design actions. The corpus encompasses
two of the three categories listed above: assistant chatbot and
script generation, which are described further in Section III.

B. Relevance of OpenROAD for training LLMs
Open-source physical design platforms such as Open-
ROAD [6] and iEDA [17] have been widely used for education
and research. OpenROAD, is an open-source platform for RTL
to GDS and is composed of several different tools tightly
integrated together into a single application via a database,
OpenDB [18]. Unlike commercial tools, which work with Tcl
interfaces, OpenROAD has Python interfaces [19] which are
crucial in training LLMs for script generation.

Although OpenROAD has been widely used, it does pose
challenges for first time users including installation-related
issues and understanding how the underlying EDA tools work.
Even though there are Python-based user interfaces which are
simpler to use compared to Tcl, understanding each API and
writing scripts using these APIs to query/modify the database
and perform physical design tasks is challenging due to the
limited documentation available and the requirement to be
familiar with OpenROAD source code. We aim to overcome
the above challenges by providing a dataset that can be used to
train LLMs to serve as chatbots and EDA tool script generators
to help users of OpenROAD improve productivity.

III. DATASET DESCRIPTION

This paper introduces a dataset which consists of prompt-
response pair data, encompassing (i) a prose dataset which
includes knowledge-based question-answer pairs, as shown in
Fig. 1, and (ii) a script dataset which includes operation-based
prompt-script pairs, as shown in Fig. 2.

A. Question-Answer Dataset
The question-answer dataset contains pairs of question
prompts and prose answers which are collected from the
OpenROAD GitHub issues, discussions, and documentation.
Data from the issues and discussions were sampled from
real user questions with answers provided by OpenROAD
experts. Data from the documentation was created by gen-
erating questions corresponding to answers present in the
OpenROAD documentation. The datapoints are categorized
into three categories: OpenROAD general, OpenROAD tool,
and OpenROAD flow.
General: Questions in this category relate to general capa-
bilities of OpenROAD, such as high-level questions, common
debugging questions, or design strategy questions.

Prompt:
What is PDNGEN?

Response:
The PDNGEN module (pdn) in OpenROAD aims to simplify the process of
adding a power grid into a floorplan. A user can specify a small set of power grid
policies to be applied to the design, such as the layers to use, stripe width, and
spacing, and then pdn will generate the actual metal straps. Power grid policies
can be defined over both the standard cell area and areas occupied by macros.

Fig. 1. Sample knowledge-based question-answer datapoint.

Prompt:
How can I perform IR drop analysis on the M1 layer where the pins are located?

Response:
from openroad import Tech, Design

import openroad as ord

tech = Tech()

# Make sure you have files read into OpenROAD DB

design = Design(tech)

design.readDb("xxx.odb")

# Static IR drop Analysis

psm_obj = design.getPDNSim()

VDD_Net = design.getBlock().findNet("VDD")

psm_obj.setNet(VDD_Net)

design.evalTclString(f"psm::set_corner [sta::cmd_corner]")

psm_obj.analyzePowerGrid('', False, '', '')

layer_M1 = tech.getDB().getTech().findLayer("M1")

drops = psm_obj.getIRDropForLayer(layer_M1)

Fig. 2. Sample flow-based prompt-script datapoint for IR drop analysis.

Tool: Questions in this category relate to specific OpenROAD
tools, including algorithm questions, command argument ques-
tions, and result interpretation questions.
Flow: Questions in this category relate specifically to the
OpenROAD Flow, which is the user-facing RTL-to-GDS flow
maintained by The OpenROAD Project.

B. Prompt-Script Dataset
The prompt-script dataset is comprised of prompts and Open-
ROAD Python code pairs. While Tcl is the normal interface for
OpenROAD, leveraging Python allows the reuse of pretrained
LLMs for Python code generation. It is worth noting that there
are currently no publicly available LLMs trained specifically
for generating Tcl scripts, hence the focus on Python-based
scripts. Within our prompt-script dataset, data points are cate-
gorized into two main types: flow-based scripts and database
(DB)-based scripts.
Flow-based: This category of our script dataset includes
those datapoints that perform physical design tasks, such as
floorplanning, placement, routing, and essential OpenROAD-
supported procedures, e.g., reading and writing for files and
database representation of the design.
DB-based: This category of our script dataset includes those
data points that directly interact with the DB to either query
the DB for information or modify the netlist and layout.
These datapoints utilize the “get” and “set” helper functions
of the DB. Examples include extracting design information,
such as cell, net, and pin properties, netlist modification APIs,
such as gate sizing and buffering, and incremental changes
to layout, such as flipping a cell or rotating it. We further
subcategorize this into query-based datapoints (which utilize
several ”get” helper functions in OpenDB) and modification-
based datapoints that incrementally change the database [7].



TABLE I
QUESTION-ANSWER AND PROMPT-SCRIPT DATASET STATISTICS

Dataset Category Unique Augmented Total

Question-answer
General 61 120 181
Tools 64 126 190
Flow 73 146 219

Total question-answer 198 392 590

Prompt-script Flow 138 235 373
Database 258 312 570

Total prompt-script 395 545 943

IV. DATASET EVALUATION: QUALITY AND STATISTICS

A. Curating the Dataset
Question-answer dataset The most significant challenge in
creating this dataset, and one of our major contributions, is
curating this data to filter out noise. Many questions and
answers in the source data (i) do not have an answer clearly
marked on GitHub, (ii) were resolved through OpenROAD
bugfixes (and therefore are not relevant), or (iii) contain
interspersed irrelevant conversation. The question-answer pairs
in this dataset were curated to provide concise questions with
direct, generalized answers and remove spurious data pairs.
Prior LLM works have shown that even small amounts of high-
quality training data can produce high-quality models through
fine-tuning foundation models [20]. Given the low availability
of question-answer data for EDA, providing a curated, high-
quality dataset is essential to facilitate future research.

Table I identifies the distribution of data points based on
the categories mentioned in Section III. The dataset features
198 unique data points as question-answer pairs. In addition,
this dataset is supplemented by augmented data pairs formed
through paraphrasing questions and answers. Between the
unique and augmented data pairs, the dataset comprises nearly
600 data points.
Prompt-script dataset Table I presents the distribution of
datapoints across categories in our prompt-script dataset. The
table distinguishes between unique-functioned datapoints and
augmented datapoints. While each datapoint is unique, in the
augmented dataset some datapoints may perform similar func-
tions with parameter variations in the script. For instance, the
augmented has few instances of sizing a gate and the gate sized
can be different between datapoints. Although these datapoints
are distinct, they are categorized as “augmented” due to their
similar functionalities but differing script parameters. Two
methods are applied to enrich the existing data and categorize
them as “Augmented” in Table I:

1) Paraphrasing prompts: The work by Chang et al. [10]
indicates that different prompts will affect the quality
of the generated code by LLMs. Therefore, we have
paraphrased prompts to link the same script to multiple
semantic meanings to mitigate such effects.

2) Variable and parameter changes: The balance of dat-
apoints across the different categories will highly affect
the training process of data-driven algorithms. To keep a
balanced dataset where each unique function has a suffi-

TABLE II
COMPARISON BETWEEN CHATGPT3.5/4 AND FINETUNED CHATGPT3.5

Model Prompt-script Question-answer
True False True Partial False

ChatGPT3.5 0 50 4 17 9
ChatGPT4 3 47 6 17 7
ChatGPT3.5 fine-tuned
with prompt-script 22 28 – – –

ChatGPT3.5 fine-tuned
with question-answer – – 26 3 1

cient representation, we augment the dataset by changing
variable names in the script and input parameters.

Some of the flow-based data are generated using automated
scripting techniques. For instance, different contextual prompts
are generated for each physical design stage, and domain
experts generate different settings and implementations of each
physical design stage. With permuting different stages in the
flow, unique physical design flow scripts are created. We also
use the same augmentation techniques to enrich the flow-based
dataset. The DB query and design modification datasets are
created using a specific design as an example and are based on
manually designed prompts and corresponding scripts. These
prompts and scripts are created by six individuals, inherently
creating different semantic representations of the prompts
based on individual preference and encapsulating different
scripting styles of each individual

B. Validating the Dataset
Question-answer dataset To ensure the quality of the col-
lected data, data samples are only taken from responses
provided by OpenROAD experts, validated as correct by
OpenROAD experts, or sampled from official OpenROAD
documentation. Further, prompts and responses were proofread
and adjusted to correct grammar, although some prompts were
not adjusted to represent realistic user prompts better.
Prompt-script dataset Each datapoint in the prompt-script
dataset undergoes validation by a domain expert, who executes
the script within OpenROAD and evaluates the correctness of
the output against the specified prompt. This validation process
mirrors the methodology employed in unit testing. Given that
the prompts are manually crafted and the scripts are tailored
for each prompt within the OpenROAD application, every
datapoint is inherently correct by construction.

V. IMPACT OF THE CORPUS

To demonstrate the impact of the corpus, we run a sim-
ple experiment by comparing different versions of ChatGPT,
shown in Table II. For each of the datasets, we separate the
dataset into 95% training and 5% validation. Then, we use
the training set to fine-tune ChatGPT3.5 using the “auto”
fine-tuning settings. Lastly, we evaluate each model with the
validation set to determine the performance on each task. We
perform fine-tuning and validation separately for each dataset.

A. Question-Answer Dataset
For the question-answer dataset, the responses are marked
as true if the response contains only factual information and



Prompt:
What is the Automatic Code Generator used for?

Response:
The Automatic Code Generator in the context of OpenROAD, which is an open-
source electronic design automation (EDA) tool, is typically used to automate the
process of generating code for various design and analysis tasks involved in chip
design. OpenROAD aims to provide a fully automated chip design flow that can
produce manufacturable layouts from high-level specifications without human
intervention. Here's how an Automatic Code Generator fits into this context and its
general uses:
1. Generating Design Representations: It can be used to automatically generate
code for different representations of a design, such as netlists, layouts, or
schematic diagrams. This is crucial for translating design specifications into
formats that can be understood and processed by other tools in the EDA pipeline.
[... elided for brevity ...]
5. Design Rule Checks (DRC) and Layout vs. Schematic (LVS): The code
generator might also be used to automate the generation of scripts or commands
for design rule checks and layout vs. schematic checks, ensuring that the design
conforms to specified rules and matches the original schematic.
6. Customization and Extension: Users can leverage the Automatic Code
Generator to extend the capabilities of the OpenROAD framework by automatically
generating code for custom plugins, extensions, or analysis tools.
     In summary, the Automatic Code Generator within an EDA context like
OpenROAD simplifies and automates many aspects of the chip design process,
from initial design representation through integration and verification, significantly
speeding up the design cycle and reducing manual effort."

Fig. 3. ChatGPT4 for question answering. Red text is factually incorrect.
Prompt:
What is Automatic Code Generator used for?

Response:
The automatic code generator in OpenROAD is used to generate code for
OpenDB objects and Iterators. It uses JSON input and automatically generates
corresponding C++ files

Fig. 4. Example using fine-tuned ChatGPT3.5 for question answering.

answers the question, partially true if the response answers
the question correctly but also contains false information, and
false if the response does not answer the question or provides
only false information. These answers are judged by a con-
sensus of OpenROAD experts. Fig. 3 shows a False example
where ChatGPT4 produces a response with factually incorrect
information present and fails to answer the question correctly.
Fig. 4 shows an example of a True response where the question
is answered and contains factually correct information.

Table II demonstrates that on the question-answer task,
ChatGPT3.5/4 does not do well. However, it is able to provide
many partially correct answers by relying on general EDA
knowledge from the foundation model. The fine-tuned Chat-
GPT3.5 performs much better by offering concise answers and
answering the question directly. In this case, the experiment
demonstrates that while foundation models can provide gen-
eral answers, fine-tuning with the dataset can improve EDA-
specific answers.

B. Prompt-Script Dataset
For the prompt-script dataset, the responses are marked as true
only if the model generates a script that returns the correct
result when executed in OpenROAD. All other responses
are marked as false. Fig. 5 shows a False example where
ChatGPT4 produces code with incorrect syntax or hallucinated
APIs (red lines). Fig. 6 shows a True example from a fine-
tuned ChatGPT3.5 model where the generated script produces
the correct output when executed in OpenROAD.

On the prompt-script task, ChatGPT3.5/4 do exceedingly
poorly on the task with almost no correct responses. After
fine-tuning, however, the accuracy increases to nearly half as

Prompt:
Give me the sample code to get a list of all the output pins of instances in a design
using OpenROAD Python API.

Response:
# Import OpenROAD Python API

import openroad as ord

# Function to get all output pins of instances in the design

def get_output_pins_of_instances(design):

output_pins = []

# Iterate through all instances in the design

for inst in design.getInstances():

# For each instance, get its master

# definition to access pins

    master = inst.getMaster()

# Iterate through the pins of the instance master

for pin in master.getPins():

# Check if the pin is an output pin

if pin.getDirection()==ord.db.Direction.OUTPUT:
# Construct a unique identifier for the pin

        pin_identifier = f"{inst.getName()}/{pin.getName()}"

        output_pins.append(pin_identifier)

  return output_pins
# Example usage

if __name__ == "__main__":

# Access the OpenROAD design

design = ord.openroad.design

# Get the list of all output pins of instances
  output_pins = get_output_pins_of_instances(design)

# Print the output pins

  print("Output Pins of Instances:")

  for pin in output_pins:

    print(pin)

Fig. 5. Example using ChatGPT4 for script generation. Red lines are incorrect.

Prompt:
Give me the sample code to get a list of all the output pins of instances in a design
using OpenROAD Python API.

Response:
# Get the current design block from the OpenROAD database
block = ord.get_db_block()

# Retrieve all instances present in the design block

insts = block.getInsts()

output_pins = []

# Iterate over each instance in the design block
for inst in insts:

  # Retrieve the pins of the instance

pins = inst.getITerms()

    # Iterate over each pin of the instance

for pin in pins:

      # Check if the pin is an output signal

if pin.isOutputSignal():

        # Append the output pin to the list

output_pins.append(pin)
return output_pins

Fig. 6. Example using fine-tuned ChatGPT3.5 for script generation.

shown in Table II. This result demonstrates that the prompt-
script dataset can greatly improve performance on EDA script
generation tasks. However, further development and research
are warranted to improve accuracy.

VI. CONCLUSION

This paper introduces EDA Corpus, a pioneering open-source
dataset designed to facilitate the integration of LLMs into
physical design through the OpenROAD framework. By of-
fering over a thousand data points across question-answer
and prompt-script formats, EDA Corpus marks a significant
step towards filling the gap in domain-specific data for LLM
training, promoting research in LLM-assisted physical design.
Our evaluation shows that fine-tuning LLMs with EDA Corpus
leads to improved performance on physical design-specific
tasks (script generation or question and answer), highlighting
the critical role of tailored datasets.
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